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Breakthroughs in
e visual perception,
e Speech recognition, and

e semantic reasoning.
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Challenges In
e safe actuation
 physical manipulation, and

 physical human interaction.
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Future of Robotics: Breakthroughs & Challenges ﬂ(".

Gary Kasparov vs. IBM Deep Blue, 1997.
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Future of Robotics: Breakthroughs & Challenges -\-\J(IT
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Challenges In
e safe actuation,
 physical manipulation, and

 physical human interaction.
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Data-driven Robotics -\\J(IT
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Machine learning for

Machine learning for

Goal: No more programming required for industrial robots
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Robot Learning
Deep reinforcement learning

Transfer learning with and without physics

Safe Human-Robot Interaction

Real-time motion planning

Real-time Robot Motion Planning and Control
Hybrid control
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Generic Technology Readiness Levels
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Level Technology Readiness Method Readiness Level (inspired by *M.F. Peeters, M. Robichaud, G. Guevremont, Analytical Process
Level Certification for Gas Turbine Design, ISABE-2005-1203)

Method capability Applicability for design

TRL 9 Actual system “flight proven” through Analysis method used for a long period of time and the method is validated by Used for design requirement verification without
successful mission operations numerous measurements and tests of relevant components in engine environment further testing or verification.

and full requirement envelop. All input data are of highest quality. Fully coherent to
other company specifications.

TRL 8 Actual system completed and “flight Analysis method used for a long period of time and the method is measurements Suitable for component sizing in product
qualified” through test and validated by and tests in relevant components in engine environment and full development but requires system verification
demonstration (ground or space) requirement envelop. Input data are of good quality. Coherent to other company testing.

specifications.

TRL 7 System prototype demonstration in a Analysis method used for a long period of time and the method is validated by Suitable for component sizing in product

space environment measurements and tests in relevant components in engine environment. Input data development but requires system verification
are of good quality. Coherent to other company specifications. testing. Service development programs
necessary.

TRL 6 System/subsystem model or Analysis method used for a period of time and the method is validated by Suitable for component sizing in product
prototype demonstration in a relevant measurements and tests of relevant components in subsystem environment. Input development but requires component verification
environment (ground or space) data are of good quality. testing

TRL 5 Component and/or breadboard Analysis method used for a period of time and the method is validated with a few Suitable for component sizing in product
validation in relevant environment measurements and tests of components. Input data are of reasonable quality. development but requires component verification

testing

TRL 4 Component and/or breadboard Analysis method used for a period of time and the method is validated with a few Suitable for component sizing in technology

validation in laboratory environment

measurements and tests. Input data are of reasonable quality.

development programs

Analytical and experimental critical
function and/or characteristic proof-of-
concept

Some experience of the analysis method within the company but verification data
and design criteria are limited. Input data are estimates and of poor quality

Suitable for component sizing in technology
development programs

Technology concept and/or
application formulated

Limited experience of the analysis method within the company and verification data
and design criteria are very limited. Input data are estimates and of poor quality.

Suitable for technology component testing

Basic principles observed and
reported

No experience of the analysis method within the company and no validation data
are available.

Not used in product development




Learning Hand-Eye Coordination (TRL 2) ﬂ("'

monocular RGB
Input camera
512x512 pixels

: . 7 DoF robotic

Finger position manipulator

2-finger

aripper
Output
Task space object

bin

gripper motion
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Recap: Reinforcement Learning
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Reward

Agent

State

parameter 0

Take

action

Observe state

| Environment
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Learning Hand-Eye Coordination (TRL 2)

800,000 attempts
14 robot arms

Two months

CNNs for deep
reinforcement
learning

Shared models




Data Driven Robotics (TRL 2)

Video courtesy of Google, 2016.



Different Objects, Different Grasping Strategies (TRL 2)

Video courtesy of Google, 2016.



=
©
LL
=
<
c
O
=
m
O
-
o,
O
o
<
O
Z




Different Objects, Different Grasping Strategies




Different Objects, Different Grasping Strategies




New (Unknown) Objects




Robotics and Al — Lessons Learned .\\J("
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1. Machine learning means learning from data;
Al is a buzzword

2. Machine learning is about data and algorithms,
but mostly data

3. Unless you have a lot of data, you should stick
to simple models
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Robotics and Al — Lessons Learned .\\J("
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4. Machine learning can only be as good as the
data you use to train it

5. Machine learning only works if your training
data Is representative

6. Most of the hard work for machine learning is
data transformation
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Robotics and Al — Lessons Learned .\ﬂ("

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

/. Machine learning is a revolutionary advance,
but it iIsn’t a magic bullet — it is a tool.

Nevertheless: There is a huge potential that
will be unleashed within the next decade.
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Outline

Robot Learning
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Transfer learning with and without physics
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Learning Robots -\\J(IT
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Learning free space motions (no contact, no physics)

Learning manipulation (contact, physics)

Goal: No more programming required for industrial robots
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Common Topics AT
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e Transfer learning
- Training in simulation
- Noise models for dynamic model parameters
- Progressive NNs to close the remaining gap
- Execution on physical systems
e Combination with traditional models (engineering)
e Safety and machine learning

e Compliance with the law
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Speed Optimization (TRL 3)
Feedback/

reward
—

Improved
trajectory
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Policy/
evaluation
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Data Generation for Reinforcement ﬂ("‘
Learning

Robot source task Robot target task
. (e.g., assembly (e.g., phyisical
in simulation) assembly)
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Learning in Task Space
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: o “pick(); move(); place(); see()” Deep
Non-real-time | Applications pic :
framework Speech ::e)zarnlng
: Perception eep
Cloud I (Physical) object-based AP| learning
Primitives Contact control Deep learning
Task manager
, Kinematics Graph controller Hybrid control
fiegg&@f’k lizslemoites wonlivel Reflexxes Admittance control
Joint control Digital/analog I/O  Inverse dynamics Reflexxes
Safety (Self-)Collision avoidance
Unified Motor control AP Fast Robot | TCP/UDP |  RS485
Interface interface
EtherCAT Master
Industrial Collaborative Mobile Physics simulator KUKA Proprietary  Kinova
HW robot arms robot arms robots (motor and joint LBR iiwa robot arms
(KUKA, (KBee, UR, (Omron, control API) and mobile
Yaskawa) KUKA, YuMi) Festo) bases
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Outline

34

Safe Human-Robot Interaction

Real-time motion planning
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Deterministic Collision Avoidance (TRL 5) ﬂ(".

Collision avoidance algorithm, which

R

* is directly used in depth space
» deploys (safe) 3D sensors —+
» considers - /Y

» multiple obstacles

» whole robot body
 uses obstacle motions for prediction (fast)
» Reflexxes framework (smooth motions, instantaneous reactions, utilize

the max. kinematic and dynamic robot capabilities)

 runs deterministically in real-time
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Interfaces and Software APIs

Robot arm with real-time joint
control API (read/write)
- Joint positions (e.g., FRI/RSI)
- Joint velocities (optional)
- Joint torgques (optional)

Safe 3D Camera with point
cloud API (read)

- Point cloud

- 3D shape

Deterministic motion planning and
collision avoidance algorithm
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Motion Planning and Control (TRL 5) ﬂ(".

e End effector
repulsive vector === repulsive velocity

e Collision avoidance for the robot body
Repulsive vector )
Cartesian constraints

Joint velocity limit )

-4
[
[
h—. e

 Smooth, jerk limited motions == ERU[Vi[T-R1H0EY U110

.. : kinematic and dynamic
Deterministic real-time

motion planning

capabilities (max. joint
torques and speeds)
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Reflexxes Motion Libraries

Selection of degrees of freedom 5??

Target position P."¢"

?I -

'

Target velocity V"""

Target state of motion

Maximum velocity V™%

A

Maximum acceleration A"

Maximum jerk J,"“"

Kinematic motion constraints

1

Position F;

—
i

Velocity V;

Y

Acceleration A;

Current state of motion

&

Reflexxes Type IV Motion Library
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Position 15;“

Velocity 1_/}.,_1

Acceleration A; 1 _

Control cycle T;
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New state of motion

Control cycle T},
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Real-time Robot Motion Planning and Control
Hybrid control
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Robots, Sensors, and Programming _\_\J(IT
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e Programming robot in “free space” is

. on different motion control levels belongs to
one of the keys for future advancements of

e In general, we distinguish between: Trajectory-following
control
1. Trajectory-following motions \
2. Sensor-guided motions IS tantaneous ?
- Force/torgue control J
Sensor-guided

- Visual servo control control

e This makes programming even
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Manipulation Primitives
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AT

Robot Programing with Primitives

Sensor-based motions

® Low-level programming APIs
@ Complex
® Expert knowledge required

® Graphical programming interfaces
® Simple
® Little to no expertise required
® Limitation of applications

® Automated based on CAD data and task descriptions
® Not yet generic
® Not yet robust
® Little to no sensor integration (e.g., force/torque, distance, vision)
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A Robot Playing Jenga (2005) _\\J(IT

Karlsruhe Institute of Technology
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Set-point signals

Hybrid Switched-

(TRL 4)

/
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Adaptive selection matrix
Karlsruhe Institute of Technology
level
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I Distance u
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Set-point signals

Hybrid Switched-

(TRL 4)
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Switching from sensor-
guided to trajectory-
following robot motion
control

Trajectory-following
control

Instantaneous
switching

Sensor-guided
control
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Reflexxes Motion Libraries (TRL 8)

Selection of degrees of freedom 5??

Target position P."¢"

?I -

'

Target velocity V"""

Target state of motion

A

Maximum velocity V™%

Maximum acceleration A"

Maximum jerk J,"“"

Kinematic motion constraints

1

Position F;

—
i

Velocity V;

Y

Acceleration A;

Current state of motion

& J

Reflexxes Type IV Motion Library
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Position 15;“

Velocity 1_/}.,_1

Acceleration A; 1 _

Control cycle T;
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New state of motion

J

Control cycle T},
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Reflexxes Motion Libraries (TRL 8) ﬂ("'
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Open source software, tutorials, examples...

sl Refloyes = ™ ™ e o o

Instantaneous
] reactions to
unforeseen
sensor signals
and events
[ XN ]
Sensors in Rohotics Motion Generation Your Benefits
In order to let robots and machines The Reflexxes Motion Libraries New features: instantaneous
make efficient use of sensors, contain algorithms to compute changes from sensor-guided to
maotion control systems need to be robot motion trajectories trajectory following contral;
fed with command variables instantaneously. Smooth and deterministic reactions to sensor

on-the-fly. Traditional motion continuous trajectories are events and sensor failures;

www.reflexxes.com
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Outlook ﬂ(".
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® Asymmetric kinematic constraints (TRL 5)

® Dynamic constraints

® Connection to (real-time) path planning (TRL 2)

0f By, Vi, Ay B, Vs 0
100 50 0 50 100 150 200 100 50 0 50 100 150 200
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Robot Learning
Deep reinforcement learning

Transfer learning with and without physics

Safe Human-Robot Interaction

Real-time motion planning

Real-time Robot Motion Planning and Control
Hybrid control
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Thank you!

torsten@kit.edu
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